Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study presents preliminary results from recent bathymetric LiDAR-guided surveys of submerged archaeological landscapes in the Apalachee Bay off the coast of Florida. We show how bathymetric LiDAR can re-identify previously recorded archaeological sites and identify new cultural deposits at shallow depths and help aid SCUBA surveys of submerged environments. While most prior archaeological applications of bathymetric LiDAR have focused on shipwrecks and historic era sites, our case study demonstrates that bathymetric LiDAR is capable of detecting Holocene and Pleistocene era archaeological sites as well. Detecting and eventually characterizing these ancient deposits will greatly expand our understanding of settlement trends when sea levels were lower and may provide insights into how some of the earliest coastal populations adapted to this novel and changing environment. Our SCUBA surveys also elucidate the impact of local environmental conditions of the applicability of deploying bathymetric LiDAR; specifically, eel grass cover does not hinder LiDAR capabilities, while high rates of sedimentation greatly reduce success in identifying archaeological deposits. Overall, our results show promise in the future of applying remote sensing to study shallow submerged archaeological landscapes, which can help improve our understanding of human–environment dynamics prior to and during periods of sea level change.more » « less
-
ABSTRACT Critical data concerning key developments in global human history now lie submerged on continental shelves where investigations confront significant challenges. Whereas underwater excavations and surveys are expensive and weather dependent and require specialized training and equipment, remote sensing methods can improve chances for success offshore. A refinement in one method, a semi‐automated analysis protocol that can help to identify Pleistocene and Holocene era archaeological deposits in bathymetric LiDAR datasets, is presented here. This method employs contour mapping to identify potential archaeological features in shallow water environments in Apalachee Bay, Florida. This method successfully re‐identified multiple previously recorded archaeological sites in the study region and detected at least four previously undocumented archaeological sites. These results suggest that this procedure can expand on methods to identify and record submerged archaeological deposits in sediment‐starved, shallow‐water environments.more » « less
-
Gillikin, David P. (Ed.)Circular shell rings along the South Atlantic Coast of North America are the remnants of some of the earliest villages that emerged during the Late Archaic (5000–3000 BP). Many of these villages, however, were abandoned during the Terminal Late Archaic (ca 3800–3000 BP). We combine Bayesian chronological modeling with mollusk shell geochemistry and oyster paleobiology to understand the nature and timing of environmental change associated with the emergence and abandonment of circular shell ring villages on Sapelo Island, Georgia. Our Bayesian models indicate that Native Americans occupied the three Sapelo shell rings at varying times with some generational overlap. By the end of the complex’s occupation, only Ring III was occupied before abandonment ca. 3845 BP. Ring III also consists of statistically smaller oysters harvested from less saline estuaries compared to earlier occupations. Integrating shell biochemical and paleobiological data with recent tree ring analyses shows a clear pattern of environmental fluctuations throughout the period in which the rings were occupied. We argue that as the environment became unstable around 4300 BP, aggregation at villages provided a way to effectively manage fisheries that are highly sensitive to environmental change. However, with the eventual collapse of oyster fisheries and subsequent rebound in environmental conditions ca. post-3800 BP, people dispersed from shell rings, and shifted to non-marine subsistence economies and other types of settlements. This study provides the most comprehensive evidence for correlations between large-scale environmental change and societal transformations on the Georgia coast during the Late Archaic period.more » « less
An official website of the United States government
